Vibrational-Rotational Spectra of HCI and DCI

1 Introduction

This experiment is concerened with the the rotational fine structure of the infrared vibrational spectrum of
a linear molecule such as HCI. From an interpretation of the details of this spectrum it is possible to obtain
the moment of inertia of the molecule and thus the internuclear separation. In addition, the pure vibrational
frequency determines a force constant that is a measure of the bond strength. By a study of DCI also, the
isotope effect can be observed.

2 Theory

The simplest model of a vibrating diatomic molecule is a harmonic oscillator, for which the potential energy
depends quadratically on the change in internuclear distance. The allowed energy levels of a harmonic
oscillator, as calculated from quantum mechanics, are

E()=hv(v+ %) (1)

where v is the vibrational quantum number having integral values 0, 1,2, ...; v is the vibrational frequency;
and h is Planck’s constant.

The simplest model of a rotating diatomic molecule is a rigid rotor or “dumbbell” model in which the
two atoms of mass m, and msy are considered to be joined by a rigid, weightless rod. The allowed energy
levels for a rigid rotor may be shown by quantum mechanics to be

h2
E(J) = J(J+1 2
() = sy I +1) 2)
where the rotational quantum number J may take integral values 0,1,2,.... The quantity [ is the moment

of inertia, which is related to the internuclear distance r and the reduced mass p = myms/(m1 + ms) by

I = (3)

Since a real molecule is undergoing both rotation and vibration simultaneously, a first approximation to
its energy levels E(v,J) would be the sum of expressions (1) and (2). A more complete expression for the
energy levels of a diatomic molecule is given below, with the levels expressed as term values T in cm™! units
rather than as energy values F in joules:

E(v,J)

T(v,J) = e

=De(v+3) = Dee(v+ )2+ BeJ(J +1) = D J*(J +1)? —ae(v+ 3)J(T+1)  (4)

where ¢ is the speed of light in cm/s, 7 is the frequency in cm™! for the molecule vibrating about its
equilibrium internuclear separation r., and

h
e — 5
8m2l,c (5)

The first and third terms on the right hand side of Eq.(4) are the harmonic oscillator and the rigid
rotor terms with r equal to .. The second term (involving the constant z.) takes into account the effect
of anharmonicity. Since the real potential U(r) for a molecule differs from a harmonic potential Uparm (see
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Figure 1: Schematic diagram showing potential energy U as a function of internuclear separation r for a
diatomic molecule. The harmonic potential is indicated by the dashed curve. The vibrational levels are also
shown.

Fig.1), the real vibrational levels are not quite those given by Eq. (1) and a correction term is required.
The fourth term (involving the constant D.) takes into account the effect of centrifugal stretching. Since
a chemical bond is not truly rigid but more like a stiff spring, it stretches somewhat when the molecule
rotates. Such an effect is important only for high J values, since the constant D, is usually very small.
The last term in Eq. (4) accounts for interaction between vibration and rotation. During a vibration the
internuclear distance r changes; this changes the moment of intertia and affects the rotation of the molecule.
The constant «, is also quite small, but this term should not be neglected.

Selection Rules. The harmonic oscillator, rigid rotor selection rules are Av = +1 and AJ = +1;
that is, infrared emission or absorption can occur only when these “allowed” transitions take place. For an
anharmonic diatomic molecule, the AJ = +1 selection rule is still valid, but weak transitions corresponding
to Av = +2,+3, ete. (overtones) can be observed. Since we are interested in the most intense absorption
band (the “fundamental”), we are concerned with transitions from various J” levels of the vibrational ground
state (v = 0) to J' levels in the first excited vibrational state (v/ = 1). From the selection rule we know that
the transition must be from J” to J' = J” £ 1. Since AE = hv = hev, the frequency ¥ (in wavenumbers) for
this transition will be just T'(v', J') =T (v",J"). When AJ =+1 (J' =J"+1)and AJ = -1 (J' = J" 1),
we find, respectively, from Eq. (4) that

Ur = o+ (2B. — 3ae) + (2B. — 4a.)J” — a.J"  J" =0,1,2,... (6)
p =iy — (2Be — 200)J" — . J"? J"=0,1,2,.. (7)
where the D, term has been dropped and 7y, the frequency of the forbidden transition from v” =0, J” =0

tov' =1,J =0, is

Uy = Ve — 2Uee (8)
The two series of lines given in Eqs. (6) and (7) are called R and P branches, respectively. These allowed
transitions are indicated on the energy-level diagram given in Fig.2. If a. were negligible, Eqs. (6) and
(7) would predict a series of equally spaced lines with separation 2B, except for a missing line at 7. The
effect of interaction between rotation and vibration (nonzero «,) is to draw the lines in the R branch closer
together and spread the lines in the P branch farther apart as shown for a typical spectrum in Fig. 3. For
convenience let us introduce a new quantity m, where m = J” + 1 for the R branch and m = —J” for the P
branch as shown in Fig.3. It is now possible to replace Egs. (6) and (7) by a single equation

7(m) = iy + (2B, — 2ae)m — aem? 9)

where m takes all integral values and m = 0 yields the frequency 7y of the forbidden “purely vibrational”
transition. If one retains the D, term of Eq. (4) (which assumes D" = D’ = D,), Eq. (9) takes the form
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Figure 2: Rotational energy levels for the ground vibrational state (v = 0) and the first excited vibrational
state (v = 1) in a diatomic molecule. The vertical arrows indicate allowed transitions in the R and P
branches; numbers in parentheses index the value J” of the lower state. Transitions in the @ branch
(AJ = 0) are not shown since they are not infrared active.

7(m) = g + (2B — 2ae)m — aem? — 4Dem? (10)

Thus a multiple linear regression can be performed to determine g, B, c, and De.

Isotope Effect. When an isotopic substitution is made in a diatomic molecule, the equilibrium bond
length r. and the force constant k are unchanged, since they depend only on the behavior of the bonding
electrons. However, the reduced mass p does change, and this will affect the rotation and vibration of the
molecule. In the case of rotation, the isotope effect can be easily stated. From the definition of B, and I,
we see that

*
B _ (11)
B p*
where an asterisk is used to distinguish one istopic molecule from another.
For a harmonic oscillator model, the frequency 7, in wavenumbers is given by

which leads to the relation

. 1
v} "

— B} 13
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The ratio 7} /7y differs slightly from this harmonic ratio dues to deviation of the true potential function from
a quadratic form, as depicted in Fig.1. A closer approximation to the solid curve can be had by adding
cubic and higher anharmonic terms to U(r), i.e.,

U(r) = %k‘(r—ref +elr—re)d +dr—r)t + ... (14)
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Figure 3: Schematic vibrational-rotational infrared spectum for a diatomic molecule.

Although somewhat complicated, it an be shown that the ¢ and d terms yield, as the first correction to the
energy levels, precisely the —p.z.(v + %)2 term given in Eq.(4). A similar conclusion is reached if U(r) is
taken to have the Morse potential form, for which T'(v) = 7. (v + %) — DeZe(v + %)2 In both cases, the mass
dependence of vz, is found to be greater than for 7, and is

e
UeTe B % (15)
Equations (13) and (15) are useful in obtaining the Z; counterpart of Eq. (8),
1
7= — 20t = (“) BT (16)
7 I

and it is seen that a measurement of 7y from HCI and DCI suffices for a determination of 7, and D.x..
Alternatively, of course, the latter constant can be determined from overtone vibrations (Av > 1) of a single
isotopic form. However, such overtones generally have low intensity, and the transitions may fall outside the
range of many infrared instruments, so the isotopic shift method is used in the present experiment.

Since HCI gas is a mixture of H3*Cl and H37CI molecules, a chlorine isotope effect will also be present.
However, the ratio of the reduced mass is only 1.0015; therefore high resolution is required to detect this
effect. HCI is predominantly H3*Cl and for this experiment, so the stronger lines in the spectra are those of
H35CL If deuterium is substituted for hydrogenm the ration of the reduced masses, p(D**Cl)/u(H?*5Cl), is
1.946 and the isotope effect is quite large.

3 Calculations

Index the lines in the spectra with appropriate m values as shown in Fig.3 (be sure to label your P and R
branches correctly). If 33Cl1/37Cl splitting is seen, index the stronger 3°Cl lines first. Make a table of these
m values and the corresponding frequencies 7(m). Express the frequencies in units of cm~! to the tenth of
a cm~!. Then list the differences between adjacent lines A(m), which will be roughly 2B, but should vary
with m. Plot Ap(m) against m, draw a straight line through the points, and check any points that seem
out of line (note that Av(m) = v(m + 1) — o(m), not o(m) — v(m — 1)). Next, plot 7(m) against m and
carry out a least-squares fit to the data with Eq. 9 to determine 7y, B, and a.. Repeat this procedure using
Eq. 10, noting that high m transmissions will be most important to determine D, due to its m3 dependence.

Repeat the above procedure for the 37Cl lines. To distinguish these from those pertaining the 3°Cl, label
with an asterisk as in the text.



Ve Dele B. Qe D.(x10%) 7. (A) k (N/m)
H®Cl 2989.74 52.05 10.5909 0.3019  0.5316  1.2746  516.3
H37Cl 2987.54 51.97 10.5753 0.3012  0.5300  1.2746

Table 1: Literature values. All figures are in cm™! unless otherwise noted.

Using the 7y values for H3*Cl and H3"Cl, determine 7, and 7.z, for H3*Cl. To do this, rearrange Eq. (8)
and insert into the right hand side of Eq. (16). Use the istopic masses to calculate the reduced mass ratios.
These are (in atomic mass units) H = 1.007825, D = 2.104102, 2°Cl = 34.968853, and 37Cl = 36.965903.
From 7y and 7., calculate k (in units of N/m).

Calculate I,, the moment of inertia, and r., the internuclear distance, for H3*Cl.

4 Discussion

Compute the ratio B¥/B. cand compare with the rigid rotor prediction of Eq.(11). Compute B, = B, —
ae(v+ %) for the v = 0,1, and 2 levels of H?>*CI and compute 7, for each of those levels. What is r, and how
does it change with v? Compare the ratio of of your calculated 7 /7 ratio with the ratio (u/u*)? expected
for the harmonic oscillator. How anharmonic is the HCI molecule, i.e., how large is 2.7 Use your values of
V. and Dz, and Eq. (4) to predict the frequencies of the first overtone transition (ignore rotational terms).
Compare all of your values calculated values to those in the literature. Which gives you a better estimate of
the force constant, 7y or 7,7



