Hi Everybody,
I am calculating a TS structure using B3LYP/6-311+G**. But after few mins later the calculation is unexpectedly stopped or failed. Someone suggest me to clear SCR folder and I did it. But, no improvement is there. The following output is given bellow. Can anybody suggest me a solution for the issue? It just only shows:
Error on total polarization charges = 0.02857
What should I do in this respect? How resolve the issue?
Advance thanks are there for your kind attention.
Adhikary
Entering Gaussian System, Link 0=g09
Initial command:
/usr/local/g09/l1.exe "/home/adhikary/scr/Gau-17612.inp" -scrdir="/home/adhikary/scr/"
Entering Link 1 = /usr/local/g09/l1.exe PID= 17613.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
19-Jul-2019
******************************************
%chk=tssb32-24.chk
%mem=1000MB
%nproc=4
Will use up to 4 processors via shared memory.
----------------------------------------------------------------------
# b3lyp/6-311+g(d,p) opt(calcfc,ts,noeigen) freq=noraman scrf(cpcm,sol
vent=ch3cn) scf=maxcyc=400
----------------------------------------------------------------------
1/5=1,10=4,11=1,14=-1,18=20,26=3,38=1/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=4,6=6,7=111,11=2,16=1,25=1,30=1,70=2101,71=2,72=2,74=-5,140=1/1,2,3;
4//1;
5/5=2,7=400,38=5,53=2/2;
8/6=4,10=90,11=11/1;
11/6=1,8=1,9=11,15=111,16=1/1,2,10;
10/6=1,13=1/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7/10=1,18=20,25=1/1,2,3,16;
1/5=1,10=4,11=1,14=-1,18=20,26=3/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=4,6=6,7=111,11=2,16=1,25=1,30=1,70=2105,71=1,72=2,74=-5/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,7=400,38=5,53=2/2;
7//1,2,3,16;
1/5=1,11=1,14=-1,18=20,26=3/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;
-------------------------
Optimization of tssb32-24
-------------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
P 1.09323 -1.15476 -0.35413
H 1.51992 -1.81758 0.77672
O 1.30674 -1.59877 -1.75058
O 0.98158 0.40382 -0.0062
C -0.10685 1.28961 -0.03524
C -0.47276 1.91019 1.15086
C -0.73001 1.60642 -1.23884
C -1.50142 2.85278 1.13016
H 0.04661 1.67624 2.07193
C -1.757 2.54566 -1.23653
H -0.41828 1.13115 -2.15995
C -2.16252 3.18433 -0.05613
H -2.24586 2.78915 -2.17399
N 4.0642 -1.33893 -0.58471
C 5.19445 -1.47174 -0.87553
S 6.77944 -1.66479 -1.28021
C -2.1833 -1.94715 1.37814
C -2.45099 -2.2022 -0.93866
C -3.4945 -2.31785 1.60433
H -1.50828 -1.70952 2.1905
C -3.77181 -2.57694 -0.7718
H -1.96596 -2.15263 -1.90338
C -4.30316 -2.63707 0.51428
H -3.86697 -2.36068 2.61858
H -4.36514 -2.82559 -1.64105
N -1.68179 -1.88404 0.12456
H -1.78716 3.33752 2.05715
C -3.26467 4.21512 -0.08259
H -3.47125 4.60132 0.91646
H -2.9931 5.06189 -0.72146
H -4.18959 3.79412 -0.48658
H -5.33237 -2.93678 0.66755
Add virtual bond connecting atoms N26 and P1 Dist= 5.50D+00.
Add virtual bond connecting atoms N14 and P1 Dist= 5.64D+00.
Add virtual bond connecting atoms N14 and H2 Dist= 5.53D+00.
Add virtual bond connecting atoms N14 and O3 Dist= 5.68D+00.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 1.3785 calculate D2E/DX2 analytically !
! R2 R(1,3) 1.4808 calculate D2E/DX2 analytically !
! R3 R(1,4) 1.6008 calculate D2E/DX2 analytically !
! R4 R(1,14) 2.9856 calculate D2E/DX2 analytically !
! R5 R(1,26) 2.9089 calculate D2E/DX2 analytically !
! R6 R(2,14) 2.9251 calculate D2E/DX2 analytically !
! R7 R(3,14) 3.0051 calculate D2E/DX2 analytically !
! R8 R(4,5) 1.4036 calculate D2E/DX2 analytically !
! R9 R(5,6) 1.3877 calculate D2E/DX2 analytically !
! R10 R(5,7) 1.3919 calculate D2E/DX2 analytically !
! R11 R(6,8) 1.3954 calculate D2E/DX2 analytically !
! R12 R(6,9) 1.083 calculate D2E/DX2 analytically !
! R13 R(7,10) 1.3917 calculate D2E/DX2 analytically !
! R14 R(7,11) 1.0824 calculate D2E/DX2 analytically !
! R15 R(8,12) 1.398 calculate D2E/DX2 analytically !
! R16 R(8,27) 1.0844 calculate D2E/DX2 analytically !
! R17 R(10,12) 1.402 calculate D2E/DX2 analytically !
! R18 R(10,13) 1.085 calculate D2E/DX2 analytically !
! R19 R(12,28) 1.5093 calculate D2E/DX2 analytically !
! R20 R(14,15) 1.1746 calculate D2E/DX2 analytically !
! R21 R(15,16) 1.6472 calculate D2E/DX2 analytically !
! R22 R(17,19) 1.3812 calculate D2E/DX2 analytically !
! R23 R(17,20) 1.0826 calculate D2E/DX2 analytically !
! R24 R(17,26) 1.3516 calculate D2E/DX2 analytically !
! R25 R(18,21) 1.3831 calculate D2E/DX2 analytically !
! R26 R(18,22) 1.0809 calculate D2E/DX2 analytically !
! R27 R(18,26) 1.3503 calculate D2E/DX2 analytically !
! R28 R(19,23) 1.3943 calculate D2E/DX2 analytically !
! R29 R(19,24) 1.0813 calculate D2E/DX2 analytically !
! R30 R(21,23) 1.3928 calculate D2E/DX2 analytically !
! R31 R(21,25) 1.0814 calculate D2E/DX2 analytically !
! R32 R(23,32) 1.0829 calculate D2E/DX2 analytically !
! R33 R(28,29) 1.0908 calculate D2E/DX2 analytically !
! R34 R(28,30) 1.095 calculate D2E/DX2 analytically !
! R35 R(28,31) 1.0936 calculate D2E/DX2 analytically !
! A1 A(2,1,3) 125.7901 calculate D2E/DX2 analytically !
! A2 A(2,1,4) 108.1455 calculate D2E/DX2 analytically !
! A3 A(2,1,26) 92.2779 calculate D2E/DX2 analytically !
! A4 A(3,1,4) 120.4603 calculate D2E/DX2 analytically !
! A5 A(3,1,26) 102.5659 calculate D2E/DX2 analytically !
! A6 A(4,1,14) 98.4093 calculate D2E/DX2 analytically !
! A7 A(4,1,26) 98.1513 calculate D2E/DX2 analytically !
! A8 A(14,1,26) 161.1819 calculate D2E/DX2 analytically !
! A9 A(1,4,5) 131.606 calculate D2E/DX2 analytically !
! A10 A(4,5,6) 117.9688 calculate D2E/DX2 analytically !
! A11 A(4,5,7) 120.5774 calculate D2E/DX2 analytically !
! A12 A(6,5,7) 121.2816 calculate D2E/DX2 analytically !
! A13 A(5,6,8) 118.9323 calculate D2E/DX2 analytically !
! A14 A(5,6,9) 120.2556 calculate D2E/DX2 analytically !
! A15 A(8,6,9) 120.8032 calculate D2E/DX2 analytically !
! A16 A(5,7,10) 118.852 calculate D2E/DX2 analytically !
! A17 A(5,7,11) 120.465 calculate D2E/DX2 analytically !
! A18 A(10,7,11) 120.6829 calculate D2E/DX2 analytically !
! A19 A(6,8,12) 121.4282 calculate D2E/DX2 analytically !
! A20 A(6,8,27) 118.9163 calculate D2E/DX2 analytically !
! A21 A(12,8,27) 119.6552 calculate D2E/DX2 analytically !
! A22 A(7,10,12) 121.4846 calculate D2E/DX2 analytically !
! A23 A(7,10,13) 118.8506 calculate D2E/DX2 analytically !
! A24 A(12,10,13) 119.6635 calculate D2E/DX2 analytically !
! A25 A(8,12,10) 118.0098 calculate D2E/DX2 analytically !
! A26 A(8,12,28) 121.4791 calculate D2E/DX2 analytically !
! A27 A(10,12,28) 120.5024 calculate D2E/DX2 analytically !
! A28 A(2,14,3) 50.822 calculate D2E/DX2 analytically !
! A29 A(2,14,15) 159.0219 calculate D2E/DX2 analytically !
! A30 A(3,14,15) 140.9985 calculate D2E/DX2 analytically !
! A31 A(19,17,20) 121.8649 calculate D2E/DX2 analytically !
! A32 A(19,17,26) 121.1068 calculate D2E/DX2 analytically !
! A33 A(20,17,26) 117.022 calculate D2E/DX2 analytically !
! A34 A(21,18,22) 123.2726 calculate D2E/DX2 analytically !
! A35 A(21,18,26) 120.8544 calculate D2E/DX2 analytically !
! A36 A(22,18,26) 115.8703 calculate D2E/DX2 analytically !
! A37 A(17,19,23) 118.9462 calculate D2E/DX2 analytically !
! A38 A(17,19,24) 119.4208 calculate D2E/DX2 analytically !
! A39 A(23,19,24) 121.6315 calculate D2E/DX2 analytically !
! A40 A(18,21,23) 119.1719 calculate D2E/DX2 analytically !
! A41 A(18,21,25) 119.2944 calculate D2E/DX2 analytically !
! A42 A(23,21,25) 121.531 calculate D2E/DX2 analytically !
! A43 A(19,23,21) 119.3888 calculate D2E/DX2 analytically !
! A44 A(19,23,32) 120.2616 calculate D2E/DX2 analytically !
! A45 A(21,23,32) 120.3477 calculate D2E/DX2 analytically !
! A46 A(1,26,17) 121.2175 calculate D2E/DX2 analytically !
! A47 A(1,26,18) 118.2243 calculate D2E/DX2 analytically !
! A48 A(17,26,18) 120.5239 calculate D2E/DX2 analytically !
! A49 A(12,28,29) 111.3482 calculate D2E/DX2 analytically !
! A50 A(12,28,30) 110.9325 calculate D2E/DX2 analytically !
! A51 A(12,28,31) 111.172 calculate D2E/DX2 analytically !
! A52 A(29,28,30) 107.9115 calculate D2E/DX2 analytically !
! A53 A(29,28,31) 108.329 calculate D2E/DX2 analytically !
! A54 A(30,28,31) 106.9738 calculate D2E/DX2 analytically !
! A55 L(1,14,15,30,-1) 180.71 calculate D2E/DX2 analytically !
! A56 L(14,15,16,30,-1) 180.2598 calculate D2E/DX2 analytically !
! A57 L(1,14,15,30,-2) 196.6281 calculate D2E/DX2 analytically !
! A58 L(14,15,16,30,-2) 179.9568 calculate D2E/DX2 analytically !
! D1 D(2,1,4,5) -119.8493 calculate D2E/DX2 analytically !
! D2 D(3,1,4,5) 85.0968 calculate D2E/DX2 analytically !
! D3 D(14,1,4,5) 164.2362 calculate D2E/DX2 analytically !
! D4 D(26,1,4,5) -24.732 calculate D2E/DX2 analytically !
! D5 D(2,1,26,17) 36.2607 calculate D2E/DX2 analytically !
! D6 D(2,1,26,18) -141.6221 calculate D2E/DX2 analytically !
! D7 D(3,1,26,17) 163.7425 calculate D2E/DX2 analytically !
! D8 D(3,1,26,18) -14.1403 calculate D2E/DX2 analytically !
! D9 D(4,1,26,17) -72.4359 calculate D2E/DX2 analytically !
! D10 D(4,1,26,18) 109.6814 calculate D2E/DX2 analytically !
! D11 D(14,1,26,17) 79.0043 calculate D2E/DX2 analytically !
! D12 D(14,1,26,18) -98.8784 calculate D2E/DX2 analytically !
! D13 D(3,2,14,1) 26.3947 calculate D2E/DX2 analytically !
! D14 D(15,2,14,1) 158.8324 calculate D2E/DX2 analytically !
! D15 D(15,3,14,1) 179.9514 calculate D2E/DX2 analytically !
! D16 D(1,4,5,6) 119.7914 calculate D2E/DX2 analytically !
! D17 D(1,4,5,7) -64.918 calculate D2E/DX2 analytically !
! D18 D(4,5,6,8) 176.3192 calculate D2E/DX2 analytically !
! D19 D(4,5,6,9) -2.6026 calculate D2E/DX2 analytically !
! D20 D(7,5,6,8) 1.0635 calculate D2E/DX2 analytically !
! D21 D(7,5,6,9) -177.8583 calculate D2E/DX2 analytically !
! D22 D(4,5,7,10) -176.4349 calculate D2E/DX2 analytically !
! D23 D(4,5,7,11) 3.4234 calculate D2E/DX2 analytically !
! D24 D(6,5,7,10) -1.3021 calculate D2E/DX2 analytically !
! D25 D(6,5,7,11) 178.5561 calculate D2E/DX2 analytically !
! D26 D(5,6,8,12) -0.2135 calculate D2E/DX2 analytically !
! D27 D(5,6,8,27) 179.9976 calculate D2E/DX2 analytically !
! D28 D(9,6,8,12) 178.7022 calculate D2E/DX2 analytically !
! D29 D(9,6,8,27) -1.0867 calculate D2E/DX2 analytically !
! D30 D(5,7,10,12) 0.7003 calculate D2E/DX2 analytically !
! D31 D(5,7,10,13) -179.7161 calculate D2E/DX2 analytically !
! D32 D(11,7,10,12) -179.1576 calculate D2E/DX2 analytically !
! D33 D(11,7,10,13) 0.426 calculate D2E/DX2 analytically !
! D34 D(6,8,12,10) -0.3628 calculate D2E/DX2 analytically !
! D35 D(6,8,12,28) -179.2949 calculate D2E/DX2 analytically !
! D36 D(27,8,12,10) 179.4245 calculate D2E/DX2 analytically !
! D37 D(27,8,12,28) 0.4924 calculate D2E/DX2 analytically !
! D38 D(7,10,12,8) 0.1149 calculate D2E/DX2 analytically !
! D39 D(7,10,12,28) 179.0578 calculate D2E/DX2 analytically !
! D40 D(13,10,12,8) -179.4655 calculate D2E/DX2 analytically !
! D41 D(13,10,12,28) -0.5225 calculate D2E/DX2 analytically !
! D42 D(8,12,28,29) -2.1422 calculate D2E/DX2 analytically !
! D43 D(8,12,28,30) 118.0593 calculate D2E/DX2 analytically !
! D44 D(8,12,28,31) -123.0369 calculate D2E/DX2 analytically !
! D45 D(10,12,28,29) 178.952 calculate D2E/DX2 analytically !
! D46 D(10,12,28,30) -60.8465 calculate D2E/DX2 analytically !
! D47 D(10,12,28,31) 58.0573 calculate D2E/DX2 analytically !
! D48 D(20,17,19,23) -178.7094 calculate D2E/DX2 analytically !
! D49 D(20,17,19,24) 0.8525 calculate D2E/DX2 analytically !
! D50 D(26,17,19,23) 0.347 calculate D2E/DX2 analytically !
! D51 D(26,17,19,24) 179.9089 calculate D2E/DX2 analytically !
! D52 D(19,17,26,1) -178.7814 calculate D2E/DX2 analytically !
! D53 D(19,17,26,18) -0.947 calculate D2E/DX2 analytically !
! D54 D(20,17,26,1) 0.319 calculate D2E/DX2 analytically !
! D55 D(20,17,26,18) 178.1534 calculate D2E/DX2 analytically !
! D56 D(22,18,21,23) 178.7332 calculate D2E/DX2 analytically !
! D57 D(22,18,21,25) -0.6786 calculate D2E/DX2 analytically !
! D58 D(26,18,21,23) -0.6459 calculate D2E/DX2 analytically !
! D59 D(26,18,21,25) 179.9423 calculate D2E/DX2 analytically !
! D60 D(21,18,26,1) 178.9951 calculate D2E/DX2 analytically !
! D61 D(21,18,26,17) 1.0971 calculate D2E/DX2 analytically !
! D62 D(22,18,26,1) -0.428 calculate D2E/DX2 analytically !
! D63 D(22,18,26,17) -178.326 calculate D2E/DX2 analytically !
! D64 D(17,19,23,21) 0.0939 calculate D2E/DX2 analytically !
! D65 D(17,19,23,32) 179.5929 calculate D2E/DX2 analytically !
! D66 D(24,19,23,21) -179.4579 calculate D2E/DX2 analytically !
! D67 D(24,19,23,32) 0.0411 calculate D2E/DX2 analytically !
! D68 D(18,21,23,19) 0.052 calculate D2E/DX2 analytically !
! D69 D(18,21,23,32) -179.4466 calculate D2E/DX2 analytically !
! D70 D(25,21,23,19) 179.4501 calculate D2E/DX2 analytically !
! D71 D(25,21,23,32) -0.0484 calculate D2E/DX2 analytically !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06
Number of steps in this run= 174 maximum allowed number of steps= 192.
Search for a saddle point of order 1.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 15 0 1.093229 -1.154762 -0.354130
2 1 0 1.519921 -1.817580 0.776716
3 8 0 1.306738 -1.598771 -1.750575
4 8 0 0.981581 0.403820 -0.006203
5 6 0 -0.106845 1.289613 -0.035240
6 6 0 -0.472760 1.910188 1.150861
7 6 0 -0.730008 1.606416 -1.238839
8 6 0 -1.501416 2.852778 1.130155
9 1 0 0.046611 1.676236 2.071930
10 6 0 -1.756995 2.545658 -1.236526
11 1 0 -0.418280 1.131151 -2.159945
12 6 0 -2.162521 3.184326 -0.056134
13 1 0 -2.245864 2.789151 -2.173991
14 7 0 4.064201 -1.338927 -0.584713
15 6 0 5.194446 -1.471735 -0.875531
16 16 0 6.779443 -1.664785 -1.280208
17 6 0 -2.183300 -1.947153 1.378136
18 6 0 -2.450986 -2.202196 -0.938662
19 6 0 -3.494503 -2.317850 1.604330
20 1 0 -1.508277 -1.709522 2.190505
21 6 0 -3.771805 -2.576938 -0.771800
22 1 0 -1.965964 -2.152627 -1.903384
23 6 0 -4.303165 -2.637071 0.514278
24 1 0 -3.866970 -2.360680 2.618576
25 1 0 -4.365138 -2.825591 -1.641048
26 7 0 -1.681787 -1.884036 0.124561
27 1 0 -1.787162 3.337516 2.057146
28 6 0 -3.264675 4.215117 -0.082585
29 1 0 -3.471247 4.601317 0.916457
30 1 0 -2.993100 5.061890 -0.721460
31 1 0 -4.189588 3.794120 -0.486581
32 1 0 -5.332365 -2.936776 0.667554
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3 4 5
1 P 0.000000
2 H 1.378480 0.000000
3 O 1.480807 2.545687 0.000000
4 O 1.600842 2.416069 2.675618 0.000000
5 C 2.741685 3.600040 3.644633 1.403618 0.000000
6 C 3.756493 4.243467 4.888531 2.392290 1.387747
7 C 3.425056 4.566004 3.831897 2.427996 1.391886
8 C 4.999566 5.573656 6.000052 3.667967 2.397177
9 H 3.872432 4.006866 5.188944 2.609952 2.147834
10 C 4.753473 5.816285 5.179479 3.687948 2.396608
11 H 3.281924 4.590819 3.255111 2.669686 2.153247
12 C 5.432899 6.266824 6.146943 4.197509 2.795743
13 H 5.478676 6.641519 5.661636 4.561306 3.376133
14 N 2.985592 2.925057 3.005055 3.588090 4.960722
15 C 4.146361 4.043719 3.986993 4.692725 6.036126
16 S 5.783664 5.649500 5.493278 6.286288 7.596010
17 C 3.790023 3.753977 4.700060 4.178509 4.097066
18 C 3.741692 4.342644 3.891505 4.409457 4.301616
19 C 5.122072 5.106825 5.901218 5.480569 5.213272
20 H 3.681136 3.343719 4.844449 3.935878 3.989080
21 C 5.085822 5.565689 5.263688 5.662662 5.378166
22 H 3.571356 4.409828 3.322753 4.338518 4.335355
23 C 5.663254 5.886321 6.138293 6.119351 5.773207
24 H 5.907182 5.718916 6.814488 6.167688 5.874174
25 H 5.851632 6.441707 5.804073 6.456719 6.135681
26 N 2.908900 3.268127 3.539603 3.513533 3.546551
27 H 5.855892 6.257101 6.959733 4.530995 3.375715
28 C 6.921031 7.747528 7.581642 5.706357 4.304963
29 H 7.455285 8.132252 8.269419 6.188535 4.815840
30 H 7.448475 8.362954 7.994504 6.165006 4.799108
31 H 7.239968 8.104665 7.803240 6.202087 4.810931
32 H 6.745937 6.943943 7.191335 7.174918 6.757392
6 7 8 9 10
6 C 0.000000
7 C 2.422627 0.000000
8 C 1.395363 2.785789 0.000000
9 H 1.082981 3.401353 2.160458 0.000000
10 C 2.784367 1.391720 2.400171 3.867140 0.000000
11 H 3.401662 1.082353 3.868067 4.292087 2.155386
12 C 2.436300 2.437352 1.397950 3.418078 1.402025
13 H 3.869252 2.138034 3.387570 4.951956 1.084953
14 N 5.844055 5.664571 7.175462 5.682428 7.028598
15 C 6.903687 6.686266 8.219413 6.715463 8.036933
16 S 8.443043 8.191112 9.736059 8.229841 9.518430
17 C 4.225717 4.646339 4.854462 4.310777 5.215702
18 C 5.019082 4.190155 5.543866 5.508529 4.807542
19 C 5.216596 5.579060 5.561711 5.358252 5.894328
20 H 3.905823 4.833379 4.683905 3.727612 5.469274
21 C 5.891912 5.193371 6.184975 6.384089 5.524167
22 H 5.297597 4.012432 5.871307 5.874842 4.749974
23 C 5.979532 5.817908 6.194154 6.320716 6.033985
24 H 5.649351 6.360663 5.915352 5.649038 6.586802
25 H 6.735946 5.746184 6.937171 7.315475 5.984677
26 N 4.112320 3.866264 4.845736 4.410798 4.634696
27 H 2.141558 3.870116 1.084405 2.474428 3.387658
28 C 3.824771 3.816645 2.536886 4.696005 2.528195
29 H 4.035845 4.596643 2.642591 4.718744 3.435073
30 H 4.448699 4.162880 3.245578 5.339056 2.850381
31 H 4.477190 4.161807 3.275092 5.383010 2.835240
32 H 6.880582 6.742152 6.957665 7.223956 6.816588
11 12 13 14 15
11 H 0.000000
12 C 3.418176 0.000000
13 H 2.467635 2.156021 0.000000
14 N 5.354930 7.714355 7.706085 0.000000
15 C 6.318815 8.745014 8.671756 1.174592 0.000000
16 S 7.771642 10.245533 10.104086 2.821779 1.647194
17 C 5.010915 5.328193 5.920650 6.576776 7.728918
18 C 4.090798 5.465957 5.146033 6.581654 7.680507
19 C 5.960581 5.899598 6.474277 7.929956 9.075431
20 H 5.308854 5.424497 6.311174 6.236320 7.374524
21 C 5.188738 6.024461 5.752351 7.935406 9.034704
22 H 3.639278 5.651021 4.957090 6.226065 7.265780
23 C 6.036828 6.228675 6.395558 8.538488 9.669239
24 H 6.849862 6.387982 7.219241 8.614436 9.752346
25 H 5.612731 6.594132 6.025004 8.624371 9.685277
26 N 3.988329 5.094315 5.238340 5.815203 6.960801
27 H 4.952347 2.151816 4.291111 7.942732 8.970637
28 C 4.682759 1.509296 2.728614 9.209341 10.223785
29 H 5.552199 2.160222 3.786341 9.712002 10.732540
30 H 4.914229 2.158186 2.798848 9.528623 10.476063
31 H 4.910633 2.160124 2.763219 9.720228 10.767572
32 H 6.977895 6.931055 7.098388 9.613363 10.739702
16 17 18 19 20
16 S 0.000000
17 C 9.352929 0.000000
18 C 9.252366 2.346115 0.000000
19 C 10.691165 1.381243 2.751202 0.000000
20 H 8.985218 1.082621 3.305013 2.158416 0.000000
21 C 10.602798 2.746307 1.383054 2.406245 3.827691
22 H 8.781143 3.295122 1.080922 3.829855 4.143157
23 C 11.268971 2.390829 2.393892 1.394292 3.388434
24 H 11.359176 2.131769 3.831980 1.081324 2.484086
25 H 11.210681 3.827211 2.132122 3.398277 4.907959
26 N 8.579852 1.351647 1.350310 2.379884 2.080549
27 H 10.466502 5.342818 6.332767 5.924797 5.056496
28 C 11.700079 6.424691 6.525095 6.751160 6.584316
29 H 12.213354 6.689874 7.125320 6.953314 6.730761
30 H 11.876993 7.361438 7.287524 7.753790 7.519060
31 H 12.277994 6.361177 6.259626 6.497017 6.681788
32 H 12.333192 3.376521 3.379628 2.153684 4.295251
21 22 23 24 25
21 C 0.000000
22 H 2.172921 0.000000
23 C 1.392823 3.397394 0.000000
24 H 3.398599 4.909708 2.166732 0.000000
25 H 1.081418 2.505541 2.164442 4.313781 0.000000
26 N 2.377341 2.065299 2.755098 3.349974 3.347279
27 H 6.850001 6.771960 6.663813 6.091818 7.635868
28 C 6.845744 6.749083 6.956090 7.134433 7.294614
29 H 7.380237 7.472158 7.297129 7.177967 7.905620
30 H 7.678581 7.382493 7.906789 8.186210 8.058566
31 H 6.391109 6.505047 6.509596 6.901279 6.721918
32 H 2.153270 4.307815 1.082852 2.507141 2.505501
26 27 28 29 30
26 N 0.000000
27 H 5.568716 0.000000
28 C 6.304610 2.744390 0.000000
29 H 6.774147 2.394683 1.090829 0.000000
30 H 7.119072 3.485456 1.094961 1.767349 0.000000
31 H 6.237308 3.528553 1.093579 1.770903 1.758975
32 H 3.837945 7.339358 7.482488 7.768433 8.448679
31 32
31 H 0.000000
32 H 6.924083 0.000000
Stoichiometry C13H13N2O2PS
Framework group C1[X(C13H13N2O2PS)]
Deg. of freedom 90
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 15 0 1.254150 -0.608422 0.054817
2 1 0 1.653102 -1.198755 1.234881
3 8 0 1.770072 -0.934535 -1.294354
4 8 0 0.728435 0.866472 0.387994
5 6 0 -0.521419 1.475835 0.196463
6 6 0 -1.194256 1.946577 1.315183
7 6 0 -1.016859 1.687190 -1.086976
8 6 0 -2.401304 2.624681 1.141261
9 1 0 -0.776301 1.802945 2.303885
10 6 0 -2.224915 2.361507 -1.237908
11 1 0 -0.469436 1.334494 -1.951511
12 6 0 -2.939219 2.840866 -0.130814
13 1 0 -2.613396 2.522148 -2.238108
14 7 0 4.185439 -0.088508 0.280637
15 6 0 5.345362 0.056423 0.165580
16 16 0 6.973118 0.252925 0.007318
17 6 0 -1.962452 -2.208390 1.262232
18 6 0 -1.817325 -2.425757 -1.069280
19 6 0 -3.168070 -2.882081 1.283669
20 1 0 -1.489993 -1.853230 2.169266
21 6 0 -3.022463 -3.103239 -1.107963
22 1 0 -1.220606 -2.226416 -1.948246
23 6 0 -3.708669 -3.336454 0.081444
24 1 0 -3.665572 -3.050725 2.228821
25 1 0 -3.405456 -3.447873 -2.058757
26 7 0 -1.310420 -1.980503 0.100392
27 1 0 -2.926870 2.992380 2.015626
28 6 0 -4.236793 3.587857 -0.321292
29 1 0 -4.673739 3.875288 0.635979
30 1 0 -4.080994 4.499391 -0.907612
31 1 0 -4.966422 2.980153 -0.863743
32 1 0 -4.649351 -3.872771 0.074251
---------------------------------------------------------------------
Rotational constants (GHZ): 0.3612212 0.1413948 0.1109351
Standard basis: 6-311+G(d,p) (5D, 7F)
There are 531 symmetry adapted cartesian basis functions of A symmetry.
There are 512 symmetry adapted basis functions of A symmetry.
512 basis functions, 816 primitive gaussians, 531 cartesian basis functions
76 alpha electrons 76 beta electrons
nuclear repulsion energy 1482.0552696071 Hartrees.
NAtoms= 32 NActive= 32 NUniq= 32 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Force inversion solution in PCM.
------------------------------------------------------------------------------
Polarizable Continuum Model (PCM)
=================================
Model : C-PCM.
Atomic radii : UFF (Universal Force Field).
Polarization charges : Total charges.
Charge compensation : None.
Solution method : Matrix inversion.
Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100).
Cavity algorithm : GePol (No added spheres)
Default sphere list used, NSphG= 32.
Lebedev-Laikov grids with approx. 5.0 points / Ang**2.
Smoothing algorithm: Karplus/York (Gamma=1.0000).
Polarization charges: spherical gaussians, with
point-specific exponents (IZeta= 3).
Self-potential: point-specific (ISelfS= 7).
Self-field : sphere-specific E.n sum rule (ISelfD= 2).
1st derivatives : Analytical E(r).r(x)/FMM algorithm (CHGder, D1EAlg=3).
Cavity 1st derivative terms included.
2nd derivatives : Analytical E(r).r(xy)/FMM algorithm (CHGder, D2EAlg=3).
Cavity 2nd derivative terms included.
Solvent : Acetonitrile, Eps= 35.688000 Eps(inf)= 1.806874
------------------------------------------------------------------------------
One-electron integrals computed using PRISM.
NBasis= 512 RedAO= T EigKep= 1.63D-06 NBF= 512
NBsUse= 512 1.00D-06 EigRej= -1.00D+00 NBFU= 512
ExpMin= 3.48D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 400 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Inv3: Mode=1 IEnd= 28941708.
Iteration 1 A*A^-1 deviation from unit magnitude is 8.66D-15 for 2316.
Iteration 1 A*A^-1 deviation from orthogonality is 5.83D-15 for 3104 1309.
Iteration 1 A^-1*A deviation from unit magnitude is 8.66D-15 for 2316.
Iteration 1 A^-1*A deviation from orthogonality is 1.99D-15 for 2139 768.
Error on total polarization charges = 0.02857
SCF Done: E(RB3LYP) = -1502.92773120 A.U. after 17 cycles
NFock= 17 Conv=0.58D-08 -V/T= 2.0031
DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000
Range of M.O.s used for correlation: 1 512
NBasis= 512 NAE= 76 NBE= 76 NFC= 0 NFV= 0
NROrb= 512 NOA= 76 NOB= 76 NVA= 436 NVB= 436
**** Warning!!: The largest alpha MO coefficient is 0.12907670D+03
**** Warning!!: The smallest alpha delta epsilon is 0.73665292D-01
Symmetrizing basis deriv contribution to polar:
IMax=3 JMax=2 DiffMx= 0.00D+00
G2DrvN: will do 33 centers at a time, making 1 passes.
Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00.
NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 35.6880, EpsInf= 1.8069)
G2PCM: DoFxE=T DoFxN=T DoGrad=T DoDP/DQ/DG/TGxP=FFFF NFrqRd= 0 IEInf=0 SqF1=F DoCFld=F IF1Alg=4.
End of G2Drv F.D. properties file 721 does not exist.
End of G2Drv F.D. properties file 722 does not exist.
End of G2Drv F.D. properties file 788 does not exist.
IDoAtm=11111111111111111111111111111111
NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 35.6880, EpsInf= 1.8069)
Differentiating once with respect to nuclear coordinates.