Question:
Basic solutions of Na4XeO6 are powerful oxidants. What mass of Mn(NO3)2•6H2O reacts with 125.0 mL of a 0.1717 M basic solution of Na4XeO6 that contains an excess of sodium hydroxide if the products include Xe and solution of sodium permanganate?
My Answer:
To solve this problem, we will follow these steps:
1. Write the balanced chemical equation for the reaction.
2. Find the moles of [itex]Na_4XeO_6[/itex] in the given solution.
3. Determine the stoichiometric ratio between [itex]Mn(NO_3)_2•6H_2O[/itex] and [itex]Na_4XeO_6[/itex].
4. Calculate the mass of [itex]Mn(NO_3)_2•6H_2O[/itex].
Step 1: Write the balanced chemical equation for the reaction.
The balanced chemical equation is:
$$2(MnNO_3)_2•6H_2O + 3Na_4XeO_6 → 3Xe + 4NaOH + 4NaMnO_4 + 4NaNO_3 + 10H_2O$$
Step 2: Find the moles of [itex]Na_4XeO_6[/itex] in the given solution.
Moles of [itex]Na_4XeO_6[/itex] = Molarity × Volume
Moles of [itex]Na_4XeO_6[/itex] = 0.1717 mol/L × 0.125 L = 0.0214625 mol
Step 3: Determine the stoichiometric ratio between [itex](MnNO_3)_2•6H_2O[/itex] and [itex]Na_4XeO_6[/itex].
From the balanced chemical equation, we have:
2 moles of [itex]Mn(NO_3)_2•6H_2O[/itex] react with 3 moles of [itex]Na_4XeO_6[/itex]
So, moles of [itex](MnNO_3)_2•6H_2O[/itex] = (2/3) × moles of [itex]Na_4XeO_6[/itex]
Moles of [itex]Mn(NO_3)_2•6H_2O[/itex] = (2/3) × 0.0214625 mol = 0.0014308 mol
Step 4: Calculate the mass of [itex](MnNO_3)_2•6H_2O[/itex].
First, we need to find the molar mass of [itex](MnNO_3)_2•6H_2O[/itex]:
Molar mass of [itex](MnNO_3)_2•6H_2O[/itex] = 341.974 g/mol
Now, we can calculate the mass of [itex](MnNO_3)_2•6H_2O[/itex]:
Mass of [itex](MnNO_3)_2•6H_2O[/itex] = moles × molar mass
= 0.0014308 mol × 341.974 g/mol = 4.89308 g
So, 4.89308 g of [itex](MnNO_3)_2•6H_2O[/itex] reacts with 125.0 mL of the 0.1717 M basic solution of [itex]Na_4XeO_6[/itex].
Is my answer given above correct?
My corrected Answer:To solve this problem, we will follow these steps:
1. Write the balanced chemical equation for the reaction.
2. Find the moles of [itex]Na_4XeO_6[/itex] in the given solution.
3. Determine the stoichiometric ratio between [itex]Mn(NO_3)_2•6H_2O[/itex] and [itex]Na_4XeO_6[/itex].
4. Calculate the mass of [itex]Mn(NO_3)_2•6H_2O[/itex].
Step 1: Write the balanced chemical equation for the reaction.
The balanced chemical equation is:
$$8Mn(NO_3)_2•6H_2O + 5Na_4XeO_6 + 4NaOH → 5Xe + 8NaMnO_4 + 16NaNO_3 + 50H_2O$$
Step 2: Find the moles of [itex]Na_4XeO_6[/itex] in the given solution.
Moles of [itex]Na_4XeO_6[/itex] = Molarity × Volume
Moles of [itex]Na_4XeO_6[/itex] = 0.1717 mol/L × 0.125 L = 0.0214625 mol
Step 3: Determine the stoichiometric ratio between [itex]Mn(NO_3)_2•6H_2O[/itex] and [itex]Na_4XeO_6[/itex].
From the balanced chemical equation, we have:
8 moles of [itex]Mn(NO_3)_2•6H_2O[/itex] react with 5 moles of [itex]Na_4XeO_6[/itex]
So, moles of [itex]Mn(NO_3)_2•6H_2O[/itex] = (8/5) × moles of [itex]Na_4XeO_6[/itex]
Moles of [itex]Mn(NO_3)_2•6H_2O[/itex] = (8/5) × 0.0214625 mol = 0.03434 mol
Step 4: Calculate the mass of [itex]Mn(NO_3)_2•6H_2O[/itex].
First, we need to find the molar mass of [itex]Mn(NO_3)_2•6H_2O[/itex]:
Molar mass of [itex]Mn(NO_3)_2•6H_2O[/itex] = 287.036 g/mol
Now, we can calculate the mass of [itex]Mn(NO_3)_2•6H_2O[/itex]:
Mass of [itex]Mn(NO_3)_2•6H_2O[/itex] = moles × molar mass
= 0.03434 g mol × 287.036 g/mol = 9.857 g
So, 9.857 g of [itex](MnNO_3)_2•6H_2O[/itex] reacts with 125.0 mL of the 0.1717 M basic solution of [itex]Na_4XeO_6[/itex].
I think now my corrected answer is correct.