This is one of those air, fire, and water questions that doesn't have a normal introductory organic chemistry answer. Xylene comes from toluene.
From a Google search,
BACKGROUND OF THE INVENTION
Since the announcement of the first commercial installation of Octafining in Japan in June, 1958, this process has been widely installed for the supply of p-xylene. See "Advances in Petroleum Chemistry and Refining" volume 4 page 433 (Interscience Publishers, New York 1961). That demand for p-xylene has increased at remarkable rates, particularly because of the demand for terephthalic acid to be used in the manufacture of polyesters.
Typically, p-xylene is derived from mixtures of C 8 aromatics separated from such raw materials as petroleum naphthas, particularly reformates, usually by selective solvent extraction.
Principal sources are catalytically reformed naphthas and pyrolysis distillates. The C 8 aromatic fractions from these sources vary quite widely in composition but will usually be in the range 10 to 32 wt.% ethyl benzene with the balance, xylenes, being divided approximately 50 wt.% meta, and 25 wt.% each of para and ortho.
An increase in temperature of 50°F. will increase the equilibrium concentration of ethyl benzene by about 1 wt.%, ortho-xylene is not changed and para and meta xylenes are both decreased by about 0.5 wt.%.
Individual isomer products may be separated from the naturally occurring mixtures by appropriate physical methods. Ethyl benzene may be separated by fractional distillation although this is a costly operation. Ortho xylene may be separated by fractional distillation and is so produced commercially. Para xylene is separated from the mixed isomers by fractional crystallization.
As commercial use of para and ortho xylene has increased there has been interest in isomerizing the other C 8 aromatics toward an equilibrium mix and thus increasing yields of the desired xylenes.