Solve the homogenous ODE below and you arrive at your answer.
d[P]/dt = k2.N - (k1 + k2)[P]
Is anyone not familiar with calculus?
This is a first order homogeneous ODE, so we can use the Integrating Factor (IF) technique.
d[P]/dt = k2.N - (k1 + k2)[P]
d[P]/dt + (k1 + k2)[P] = k2.N
IF = exp(int (k1+k2) dx) = exp( (k1+k2)t )
int [[ exp( (k1+k2)t ).d[P]/dt + exp( (k1+k2)t ).(k1 + k2)[P] ]] dt= int [[ exp( (k1+k2)t ).k2.N ]] dt
exp( (k1+k2)t ).[P] = k2.N.exp( (k1+k2)t )/(k1+k2) + C
where C is the constant of integration
when t = 0, [P] = P0exp(0).P
0 = k2.N.exp(0)/(k1+k2) + C
P
0 = k2.N/(k1+k2) + C
C = P
0 - k2.N/(k1+k2)
Solving the above equation,
P = [[ (k2.N.exp((k1+k2)t)+P
0.(k1+k2) - k2.N)]] /[[ (k1+k2).exp((k1+k2).t) ]]
note: exp(x) = ex