I tried doing it this way:
ΔT for the first sample is the total samples final temp, minus the first sample's initial temp (47.9-22.5), so 25.4oC.
Calculating q for the first sample as 108g x 4.18 J/g C x 25.4oC = 11466.58 Joules
Figuring that since the first sample gained heat, the second sample must have provided the heat, so doing the calculation for the second sample, I used
q=mCΔT
11466.58 Joules = 65.1g x 4.18 J / g C x ΔT
11466.58/(65.1gx4.18)=ΔT
ΔT=42.14oC
So, since second sample lost heat, it's initial temperature was 90.04oC (47.9oC final temperature of mixture + 42.14oC ΔT of second sample).
Would this be the correct way of approaching the problem?
q=mCΔT