This is the Start molecule:
And this is the log file, I thing I'm not staring from the right geometry
Entering Link 1 = C:\Gaussian\G09W\l1.exe PID= 5912.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009, Gaussian, Inc.
All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision A.02,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
******************************************
Gaussian 09: IA32W-G09RevA.02 11-Jun-2009
06-Dec-2014
******************************************
%nprocshared=2
Will use up to 2 processors via shared memory.
%chk=C:\Gaussian\G09W\Scratch\GQL_126a\t_igo.chk
------------------------------------------------------
# opt=(calcfc,ts) freq hf/6-311+g(d) geom=connectivity
------------------------------------------------------
1/5=1,10=4,18=20,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=4,6=6,7=11,11=9,16=1,25=1,30=1,71=2/1,2,3;
4//1;
5/5=2,38=5/2;
8/6=4,10=90,11=11/1;
11/6=1,8=1,9=11,15=111,16=1/1,2,10;
10/6=1,7=6,13=1/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7/10=1,18=20,25=1/1,2,3,16;
1/5=1,10=4,18=20/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=4,6=6,7=11,11=9,16=1,25=1,30=1,71=1/1,2,3;
4/5=5,16=3/1;
5/5=2,38=5/2;
7//1,2,3,16;
1/5=1,18=20/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;
-------------------
Title Card Required
-------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
C -3.61448 -0.15439 -0.03044
H -3.25783 -1.1632 -0.02947
H -3.2586 0.34889 -0.90506
H -4.68448 -0.15437 -0.02947
C -3.09999 0.57318 1.22557
O -3.58367 -0.10628 2.39503
H -2.86405 0.90844 2.65073
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 1.07 calculate D2E/DX2 analytically !
! R2 R(1,3) 1.07 calculate D2E/DX2 analytically !
! R3 R(1,4) 1.07 calculate D2E/DX2 analytically !
! R4 R(1,5) 1.54 calculate D2E/DX2 analytically !
! R5 R(5,6) 1.4364 calculate D2E/DX2 analytically !
! R6 R(6,7) 1.27 calculate D2E/DX2 analytically !
! A1 A(2,1,3) 109.4712 calculate D2E/DX2 analytically !
! A2 A(2,1,4) 109.4712 calculate D2E/DX2 analytically !
! A3 A(2,1,5) 109.4712 calculate D2E/DX2 analytically !
! A4 A(3,1,4) 109.4712 calculate D2E/DX2 analytically !
! A5 A(3,1,5) 109.4713 calculate D2E/DX2 analytically !
! A6 A(4,1,5) 109.4712 calculate D2E/DX2 analytically !
! A7 A(1,5,6) 109.1504 calculate D2E/DX2 analytically !
! A8 A(5,6,7) 66.12 calculate D2E/DX2 analytically !
! D1 D(2,1,5,6) -60.1111 calculate D2E/DX2 analytically !
! D2 D(3,1,5,6) 179.8889 calculate D2E/DX2 analytically !
! D3 D(4,1,5,6) 59.8889 calculate D2E/DX2 analytically !
! D4 D(1,5,6,7) 179.9989 calculate D2E/DX2 analytically !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
Number of steps in this run= 28 maximum allowed number of steps= 100.
Search for a saddle point of order 1.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 -3.614479 -0.154390 -0.030441
2 1 0 -3.257825 -1.163200 -0.029472
3 1 0 -3.258599 0.348888 -0.905061
4 1 0 -4.684478 -0.154374 -0.029468
5 6 0 -3.099993 0.573176 1.225566
6 8 0 -3.583673 -0.106279 2.395034
7 1 0 -2.864050 0.908442 2.650735
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3 4 5
1 C 0.000000
2 H 1.070000 0.000000
3 H 1.070000 1.747302 0.000000
4 H 1.070000 1.747303 1.747303 0.000000
5 C 1.540000 2.148263 2.148263 2.148263 0.000000
6 O 2.426147 2.664861 3.347160 2.663136 1.436405
7 H 2.980177 3.410318 3.621112 3.409842 1.482962
6 7
6 O 0.000000
7 H 1.270000 0.000000
Stoichiometry C2H4O
Framework group C1[X(C2H4O)]
Deg. of freedom 15
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 1.221798 -0.122728 0.000001
2 1 0 1.296667 -0.734541 0.874632
3 1 0 2.015081 0.595323 -0.001957
4 1 0 1.295059 -0.737530 -0.872668
5 6 0 -0.133136 0.609225 -0.000004
6 8 0 -1.192654 -0.360662 0.000000
7 1 0 -1.597546 0.843066 0.000015
---------------------------------------------------------------------
Rotational constants (GHZ): 48.9708202 9.6514707 8.4786676
Standard basis: 6-311+G(d) (5D, 7F)
There are 78 symmetry adapted basis functions of A symmetry.
Integral buffers will be 262144 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
78 basis functions, 128 primitive gaussians, 81 cartesian basis functions
12 alpha electrons 12 beta electrons
nuclear repulsion energy 66.2070996259 Hartrees.
NAtoms= 7 NActive= 7 NUniq= 7 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F
One-electron integrals computed using PRISM.
NBasis= 78 RedAO= T NBF= 78
NBsUse= 78 1.00D-06 NBFU= 78
Harris functional with IExCor= 205 diagonalized for initial guess.
ExpMin= 4.38D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=2 IRadAn= 0 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1
ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
I1Cent= 4 NGrid= 0.
Petite list used in FoFCou.
Initial guess orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A)
The electronic state of the initial guess is 1-A.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Keep R1 ints in memory in canonical form, NReq=6375006.
SCF Done: E(RHF) = -152.762397155 A.U. after 14 cycles
Convg = 0.5696D-08 -V/T = 2.0030
Range of M.O.s used for correlation: 1 78
NBasis= 78 NAE= 12 NBE= 12 NFC= 0 NFV= 0
NROrb= 78 NOA= 12 NOB= 12 NVA= 66 NVB= 66
**** Warning!!: The largest alpha MO coefficient is 0.32733438D+02
Symmetrizing basis deriv contribution to polar:
IMax=3 JMax=2 DiffMx= 0.00D+00
G2DrvN: will do 8 centers at a time, making 1 passes doing MaxLOS=2.
Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00.
FoFDir/FoFCou used for L=0 through L=2.
End of G2Drv Frequency-dependent properties file 721 does not exist.
End of G2Drv Frequency-dependent properties file 722 does not exist.
IDoAtm=1111111
Differentiating once with respect to nuclear coordinates.
Keep R1 ints in memory in canonical form, NReq=6336717.
There are 24 degrees of freedom in the 1st order CPHF. IDoFFX=5.
18 vectors produced by pass 0 Test12= 3.30D-11 4.17D-07 XBig12= 7.25D-02 7.87D-02.
AX will form 18 AO Fock derivatives at one time.
18 vectors produced by pass 1 Test12= 3.30D-11 4.17D-07 XBig12= 6.79D-03 3.43D-02.
18 vectors produced by pass 2 Test12= 3.30D-11 4.17D-07 XBig12= 9.52D-05 3.42D-03.
18 vectors produced by pass 3 Test12= 3.30D-11 4.17D-07 XBig12= 1.91D-06 2.88D-04.
18 vectors produced by pass 4 Test12= 3.30D-11 4.17D-07 XBig12= 1.73D-08 3.13D-05.
8 vectors produced by pass 5 Test12= 3.30D-11 4.17D-07 XBig12= 1.25D-10 2.22D-06.
Inverted reduced A of dimension 98 with in-core refinement.
End of Minotr Frequency-dependent properties file 721 does not exist.
End of Minotr Frequency-dependent properties file 722 does not exist.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A)
The electronic state is 1-A.
Alpha occ. eigenvalues -- -20.60795 -11.34609 -11.23426 -1.35475 -1.01366
Alpha occ. eigenvalues -- -0.76494 -0.66054 -0.60405 -0.60283 -0.52453
Alpha occ. eigenvalues -- -0.51118 -0.36857
Alpha virt. eigenvalues -- 0.06841 0.07202 0.07722 0.10472 0.11061
Alpha virt. eigenvalues -- 0.13427 0.13780 0.15823 0.18500 0.20992
Alpha virt. eigenvalues -- 0.25441 0.27577 0.30576 0.32534 0.33312
Alpha virt. eigenvalues -- 0.34319 0.39012 0.42320 0.45105 0.55456
Alpha virt. eigenvalues -- 0.55752 0.58200 0.70632 0.73924 0.78216
Alpha virt. eigenvalues -- 0.80808 0.82002 0.83302 0.91480 1.00821
Alpha virt. eigenvalues -- 1.11585 1.28460 1.29460 1.33562 1.34103
Alpha virt. eigenvalues -- 1.45692 1.59334 1.76065 1.83721 1.85829
Alpha virt. eigenvalues -- 1.87253 1.97513 2.03494 2.10690 2.30841
Alpha virt. eigenvalues -- 2.73973 2.82120 2.82542 2.84228 3.02648
Alpha virt. eigenvalues -- 3.15573 3.17624 3.21666 3.25763 3.44814
Alpha virt. eigenvalues -- 3.45791 3.58434 3.63735 3.91298 4.38579
Alpha virt. eigenvalues -- 5.51256 5.55435 5.88287 24.54879 24.74262
Alpha virt. eigenvalues -- 51.51097
Condensed to atoms (all electrons):
1 2 3 4 5 6
1 C 5.880689 0.358066 0.422478 0.358197 0.016207 -0.133274
2 H 0.358066 0.419720 -0.027647 -0.017350 -0.006142 -0.005636
3 H 0.422478 -0.027647 0.443154 -0.027700 -0.085974 0.009932
4 H 0.358197 -0.017350 -0.027700 0.419796 -0.006262 -0.005623
5 C 0.016207 -0.006142 -0.085974 -0.006262 6.191370 -0.057370
6 O -0.133274 -0.005636 0.009932 -0.005623 -0.057370 8.370265
7 H 0.027910 -0.000051 -0.001458 -0.000051 -0.049143 0.221152
7
1 C 0.027910
2 H -0.000051
3 H -0.001458
4 H -0.000051
5 C -0.049143
6 O 0.221152
7 H 0.294487
Mulliken atomic charges:
1
1 C -0.930273
2 H 0.279041
3 H 0.267215
4 H 0.278994
5 C -0.002686
6 O -0.399445
7 H 0.507154
Sum of Mulliken atomic charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
1 C -0.105023
5 C -0.002686
6 O 0.107708
Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000
APT atomic charges:
1
1 C -1.454221
2 H 0.434388
3 H 0.508452
4 H 0.434090
5 C 0.017640
6 O -0.567030
7 H 0.626681
Sum of APT charges= 0.00000
APT Atomic charges with hydrogens summed into heavy atoms:
1
1 C -0.077292
2 H 0.000000
3 H 0.000000
4 H 0.000000
5 C 0.017640
6 O 0.059651
7 H 0.000000
Sum of APT charges= 0.00000
Electronic spatial extent (au): <R**2>= 176.9842
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 1.1573 Y= 0.7762 Z= 0.0003 Tot= 1.3935
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -17.6402 YY= -21.6244 ZZ= -18.9204
XY= -3.6212 XZ= 0.0007 YZ= -0.0004
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 1.7548 YY= -2.2294 ZZ= 0.4746
XY= -3.6212 XZ= 0.0007 YZ= -0.0004
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -4.8291 YYY= -7.3027 ZZZ= 0.0043 XYY= -1.1672
XXY= 5.7178 XXZ= 0.0005 XZZ= 0.1250 YZZ= -1.7323
YYZ= -0.0032 XYZ= -0.0020
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -150.1136 YYYY= -60.5574 ZZZZ= -25.4148 XXXY= -7.6405
XXXZ= -0.0021 YYYX= -0.0796 YYYZ= 0.0029 ZZZX= 0.0077
ZZZY= -0.0023 XXYY= -30.0644 XXZZ= -31.1057 YYZZ= -12.8021
XXYZ= -0.0058 YYXZ= -0.0037 ZZXY= -1.1247
N-N= 6.620709962594D+01 E-N=-4.910642683954D+02 KE= 1.523119511668D+02
Exact polarizability: 0.000 0.000 0.000 0.000 0.000 0.000
Approx polarizability: 28.326 2.760 27.371 0.001 0.000 20.359
Calling FoFJK, ICntrl= 100147 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 6 0.018535973 0.026278338 0.020946870
2 1 0.003075213 -0.011023918 0.003013639
3 1 0.001987208 0.002782155 -0.009159285
4 1 -0.011414329 -0.000796347 0.003012950
5 6 -0.048518466 -0.068339379 0.039677329
6 8 0.095062979 0.133882648 -0.053589174
7 1 -0.058728578 -0.082783498 -0.003902329
-------------------------------------------------------------------
Cartesian Forces: Max 0.133882648 RMS 0.049085867
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Internal Forces: Max 0.100206664 RMS 0.033147298
Search for a saddle point.
Step number 1 out of a maximum of 28
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Swaping is turned off.
Second derivative matrix not updated -- analytic derivatives used.
The second derivative matrix:
R1 R2 R3 R4 R5
R1 0.40281
R2 0.00283 0.40175
R3 0.00190 0.00283 0.40280
R4 0.00459 0.00419 0.00459 0.23856
R5 -0.00126 0.00179 -0.00125 0.02866 0.13169
R6 0.00097 -0.00108 0.00097 0.00025 0.08283
A1 0.00620 0.00652 -0.00382 -0.01210 -0.00435
A2 0.00549 -0.00355 0.00549 -0.01277 0.00285
A3 0.00533 -0.00683 -0.00665 0.00695 -0.00496
A4 -0.00382 0.00652 0.00621 -0.01208 -0.00435
A5 -0.00654 0.00417 -0.00654 0.02297 0.01584
A6 -0.00665 -0.00683 0.00530 0.00703 -0.00503
A7 -0.00672 0.01101 -0.00677 0.03683 0.09933
A8 -0.00719 0.00273 -0.00721 -0.00992 -0.15357
D1 0.00068 0.00636 -0.00658 0.00353 0.00131
D2 -0.00617 0.00000 0.00617 0.00002 -0.00002
D3 0.00659 -0.00635 -0.00068 -0.00355 -0.00132
D4 -0.00052 0.00000 0.00053 -0.00001 -0.00001
R6 A1 A2 A3 A4
R6 0.01581
A1 -0.00032 0.07578
A2 -0.00220 0.00023 0.07135
A3 0.00374 -0.03568 -0.03605 0.10066
A4 -0.00032 0.00043 0.00023 0.00182 0.07579
A5 -0.00468 -0.04258 0.00031 -0.02274 -0.04258
A6 0.00378 0.00182 -0.03608 -0.00801 -0.03570
A7 -0.02246 -0.00615 0.00757 -0.01900 -0.00612
A8 0.24659 0.00272 0.00991 -0.01756 0.00275
D1 -0.00095 0.02000 -0.02160 -0.00572 0.00046
D2 0.00001 -0.02489 0.00000 -0.00974 0.02489
D3 0.00096 -0.00046 0.02162 0.00687 -0.02001
D4 0.00000 -0.00002 0.00000 0.00083 0.00002
A5 A6 A7 A8 D1
A5 0.13040
A6 -0.02281 0.10077
A7 0.04280 -0.01910 0.32792
A8 0.01986 -0.01768 0.12123 -0.36609
D1 0.01375 -0.00688 0.00704 0.00472 0.01967
D2 -0.00002 0.00976 0.00000 -0.00002 -0.00973
D3 -0.01376 0.00573 -0.00702 -0.00472 -0.01450
D4 0.00000 -0.00083 -0.00001 0.00000 -0.00079
D2 D3 D4
D2 0.02673
D3 -0.00972 0.01970
D4 -0.00127 -0.00079 0.00540
Eigenvalues --- -0.55645 -0.00210 0.00568 0.08185 0.08627
Eigenvalues --- 0.13066 0.13452 0.13480 0.14814 0.16286
Eigenvalues --- 0.24028 0.38592 0.40207 0.40833 0.41868
Eigenvalues --- 1000.000001000.000001000.00000
Eigenvectors required to have negative eigenvalues:
A8 R6 R5 A7 A5
1 0.85622 -0.41380 0.26388 -0.15559 -0.02295
A6 A3 A2 R4 R3
1 0.02132 0.02114 -0.01216 0.00848 0.00597
RFO step: Lambda0=4.805923379D-03 Lambda=-7.40174488D-02.
Linear search not attempted -- option 19 set.
Maximum step size ( 0.300) exceeded in Quadratic search.
-- Step size scaled by 0.316
Iteration 1 RMS(Cart)= 0.07728267 RMS(Int)= 0.00684855
Iteration 2 RMS(Cart)= 0.00507722 RMS(Int)= 0.00005953
Iteration 3 RMS(Cart)= 0.00004105 RMS(Int)= 0.00005439
Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00005439
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 2.02201 0.01142 0.00000 0.00913 0.00913 2.03114
R2 2.02201 0.00946 0.00000 0.00536 0.00536 2.02736
R3 2.02201 0.01142 0.00000 0.00672 0.00672 2.02872
R4 2.91018 -0.02674 0.00000 -0.02243 -0.02243 2.88775
R5 2.71441 -0.08321 0.00000 -0.13417 -0.13417 2.58024
R6 2.39995 -0.10021 0.00000 -0.10752 -0.10752 2.29244
A1 1.91063 0.00120 0.00000 -0.00900 -0.00900 1.90163
A2 1.91063 -0.00047 0.00000 -0.00328 -0.00331 1.90732
A3 1.91063 -0.00411 0.00000 -0.01758 -0.01760 1.89304
A4 1.91063 0.00122 0.00000 0.01012 0.00998 1.92062
A5 1.91063 0.00623 0.00000 0.01300 0.01293 1.92356
A6 1.91063 -0.00407 0.00000 0.00675 0.00666 1.91730
A7 1.90503 0.00808 0.00000 0.04536 0.04536 1.95039
A8 1.15401 0.03987 0.00000 -0.03575 -0.03575 1.11826
D1 -1.04914 0.00278 0.00000 -0.13423 -0.13425 -1.18339
D2 3.13965 0.00001 0.00000 -0.12040 -0.12029 3.01937
D3 1.04526 -0.00280 0.00000 -0.14489 -0.14498 0.90028
D4 3.14157 -0.00001 0.00000 -0.04710 -0.04710 3.09447
Item Value Threshold Converged?
Maximum Force 0.100207 0.000450 NO
RMS Force 0.033147 0.000300 NO
Maximum Displacement 0.156958 0.001800 NO
RMS Displacement 0.076426 0.001200 NO
Predicted change in Energy=-1.969454D-02
Optimization stopped.
-- Wrong number of Negative eigenvalues: Desired= 1 Actual= 2
-- Flag reset to prevent archiving.
----------------------------
! Non-Optimized Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 1.0748 -DE/DX = 0.0114 !
! R2 R(1,3) 1.0728 -DE/DX = 0.0095 !
! R3 R(1,4) 1.0736 -DE/DX = 0.0114 !
! R4 R(1,5) 1.5281 -DE/DX = -0.0267 !
! R5 R(5,6) 1.3654 -DE/DX = -0.0832 !
! R6 R(6,7) 1.2131 -DE/DX = -0.1002 !
! A1 A(2,1,3) 108.9556 -DE/DX = 0.0012 !
! A2 A(2,1,4) 109.2816 -DE/DX = -0.0005 !
! A3 A(2,1,5) 108.4631 -DE/DX = -0.0041 !
! A4 A(3,1,4) 110.0432 -DE/DX = 0.0012 !
! A5 A(3,1,5) 110.212 -DE/DX = 0.0062 !
! A6 A(4,1,5) 109.8531 -DE/DX = -0.0041 !
! A7 A(1,5,6) 111.7492 -DE/DX = 0.0081 !
! A8 A(5,6,7) 64.0718 -DE/DX = 0.0399 !
! D1 D(2,1,5,6) -67.8031 -DE/DX = 0.0028 !
! D2 D(3,1,5,6) 172.9971 -DE/DX = 0.0 !
! D3 D(4,1,5,6) 51.5823 -DE/DX = -0.0028 !
! D4 D(1,5,6,7) 177.3001 -DE/DX = 0.0 !
--------------------------------------------------------------------------------
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 -3.614479 -0.154390 -0.030441
2 1 0 -3.257825 -1.163200 -0.029472
3 1 0 -3.258599 0.348888 -0.905061
4 1 0 -4.684478 -0.154374 -0.029468
5 6 0 -3.099993 0.573176 1.225566
6 8 0 -3.583672 -0.106280 2.395034
7 1 0 -2.864050 0.908442 2.650735
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3 4 5
1 C 0.000000
2 H 1.070000 0.000000
3 H 1.070000 1.747302 0.000000
4 H 1.070000 1.747303 1.747303 0.000000
5 C 1.540000 2.148263 2.148263 2.148263 0.000000
6 O 2.426147 2.664861 3.347160 2.663136 1.436405
7 H 2.980177 3.410318 3.621112 3.409842 1.482962
6 7
6 O 0.000000
7 H 1.270000 0.000000
Stoichiometry C2H4O
Framework group C1[X(C2H4O)]
Deg. of freedom 15
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 1.221798 -0.122728 0.000001
2 1 0 1.296667 -0.734542 0.874632
3 1 0 2.015081 0.595323 -0.001957
4 1 0 1.295059 -0.737530 -0.872668
5 6 0 -0.133136 0.609225 -0.000004
6 8 0 -1.192654 -0.360662 -0.000001
7 1 0 -1.597546 0.843066 0.000015
---------------------------------------------------------------------
Rotational constants (GHZ): 48.9708202 9.6514707 8.4786676
IF YOU WANT TO LEARN FROM THE THEORETICAL PHYSICISTS ABOUT THE
METHODS WHICH THEY USE, I ADVISE YOU TO FOLLOW THIS PRINCIPLE VERY STRICTLY:
DON'T LISTEN TO THEIR WORDS; PAY ATTENTION, INSTEAD, TO THEIR ACTIONS.
-- A.EINSTEIN, 1934
Error termination request processed by link 9999.
Error termination via Lnk1e in C:\Gaussian\G09W\l9999.exe at Sat Dec 06 10:30:47 2014.
Job cpu time: 0 days 0 hours 0 minutes 17.0 seconds.
File lengths (MBytes): RWF= 7 Int= 0 D2E= 0 Chk= 1 Scr= 1
If I remove two protons in the carbon, gaussian knows that it's carbon is a carbene?