I thought it was an analysis thing. I was using the ideal gas law, I graphed it, but I havn't tried the Compressed air in the equation yet. Well, heres the problem with C02 being used as a compressed gas.
The problem is that it goes into its liquid form too readily. When you try to pull it out at a regular pressure, you pull out a lot of liquid too, which causes velocity spikes, and if your using regulators, you freeze them(which is not good at all). This is why C02 requires a few things, like anti-siphon tubes, and expansion chambers(a chamber system used between the ASA and the marker to allow the C02 expand) and most times you still get liquid C02, which can cause problems on a paintball marker. Compressed air however, is almost completely a gas when confined(its three point is spread out, so it takes a LOT of pressure to get it as a liquid), which means you can pull out of it an exact pressure, without liquid in there to throw off the pressure(since liquid is a diferent weight/size than gas).
Also, with changes in temperature during the day, C02 can be thrown around its stages quite frequently, this means that the settings get thrown off a lot as well, and that you then get oddjumps in pressure. I was just hoping that I could somehow show this more graphically... not that I need to, but if I can, I want to try... and because I actually like doing this for some wierd wierd reason(next year I hope to go to college for this type of thing). Any ideas? I only did C02 using the ideal gas law(I had pressure and volume at a certain temperature, so I used PV=nRT and found n, which I could then change the temperature and leave Pressure as a variable), and the increase seemed quite steady, but I havn't done CA yet.
I did C02 over 10 degrees(from 78 to 89 degrees fahrenheight, which needed converting to Kelvin). I'll try CA in a little. And I have to go take my car somewhere, but I'll check some of my books for van der waals, I remebmer his principles and forces, but the equation is blowing my mind. Thanks again!
Raven