1) half life:
t(1/2) = 1/k[A]o
2. Need to use method of partial fractions, then integrate:
1/(A-x)(B-X) = C/A-X + D/B-X
where C and D are constants to be evaluated. Continuing,
C(B-X) + D(A-X) =1
CB - CX +DA - DX = 1
Therefore
-CX - DX = 0, D = -C
and
CB + DA = 1
substituting -C for D above,
CB - CA =1
C = 1/B-A
hence, D= -1/B-A
Therefore
dx/([A]o - x)(o - x) =
dx C/([A]o - x) + dx D/(o -x) =
(1/(o - [A]o))dx /([A]o-x) - (1/(o - [A]o))dx/(o - x) =
(1/(o - [A]o)) (dx /([A]o-x) - dx/(o - x))
now, the separated terms can be integrated via natural log.