November 24, 2024, 07:44:56 AM
Forum Rules: Read This Before Posting


Topic: Forum Now Supports LATEX!  (Read 96950 times)

0 Members and 3 Guests are viewing this topic.

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #45 on: May 01, 2010, 04:34:07 PM »
Still practicing.
$$ V_(total) = V^(partial,mol)_(A) n_A + V^(partial,mol)_(B) n_B /$$

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #46 on: May 01, 2010, 04:35:51 PM »
$$ V_{total} = V^{partial,mol}_{A} n_A + V^{partial,mol}_{B} n_B /$$

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #47 on: May 07, 2010, 08:22:24 PM »
Checking for errors.

$$ log \left (\frac {W} {W_{max}} \right) = -H log \left (\frac {h} {\frac {N} {2}} \right ) - T log \left (\frac {T} {\frac {N} {2}} \right ) /$$

$$ \alpha = \frac {(H - T)} {N} /$$

$$ H = \left (\frac {N} {2} \right ) (1 + \alpha ) /$$

$$ T = \left (\frac {N} {2} \right ) (1 - \alpha) /$$

$$ \frac {W} {W_{max}} = e^{-N \alpha ^{2}} /$$

$$ ln \left (\frac {W} {W_{max}} \right ) = - \left (\frac {N} {2} \right ) (1 + \alpha) ln (1 + \alpha) - \left (\frac {N} {2} \right ) (1 - \alpha) ln (1 - \alpha) /$$

$$ ln \left (\frac {W} {W_{max}} \right ) = - \left (\frac {N} {2} \right) (1 + \alpha) ln (1 - \alpha ^{2}) + N \alpha ln (1 - \alpha) /$$

$$ W = frac\ {N!} {\prod_{n} a_{n}!} /$$

$$ P_{dc} = \frac {W_dc} {\sum_{n} W_{n}} /$$

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #48 on: May 07, 2010, 08:28:24 PM »
$$ log \left (\frac {W} {W_{max}} \right) = -H log \left ( \frac {h} {\frac {N} {2}} \right ) - T log \left (\frac {T} { \frac {N} {2}} \right ) /$$

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #49 on: May 07, 2010, 08:30:41 PM »
$$ log \left (\frac {W} {W_{max}} \right) = -H log \left ( \frac {H} \left ({\frac {N} {2} \right )} \right ) - T log \left (\frac {T} \left ({\frac {N} {2} \right)} \right ) /$$

Offline haz658

  • Regular Member
  • ***
  • Posts: 31
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #50 on: June 14, 2010, 03:46:11 PM »
 $$ \Delta G = -RTlnK /$$

cupid.callin

  • Guest
Re: Forum Now Supports LATEX!
« Reply #51 on: December 11, 2010, 05:04:57 PM »
Unuseful

Offline rabolisk

  • Chemist
  • Full Member
  • *
  • Posts: 494
  • Mole Snacks: +45/-25
Re: Forum Now Supports LATEX!
« Reply #52 on: January 22, 2011, 05:23:58 PM »
$$ \frac{d[A]}{dt} /$$

Offline Bert95

  • New Member
  • **
  • Posts: 7
  • Mole Snacks: +0/-0
  • Gender: Male
Re: Forum Now Supports LATEX!
« Reply #53 on: May 02, 2011, 09:48:23 AM »
test




Offline Mm04302011

  • New Member
  • **
  • Posts: 8
  • Mole Snacks: +0/-0
Re: Forum Now Supports LATEX!
« Reply #54 on: June 11, 2011, 11:57:09 AM »
[img]http://www.forkosh.dreamhost.com/mimetex.cgi?{ \Delta{G} = \Delta{H} - T\Delta{S} /$$

Sponsored Links