Unfortunately the end substance needs to be dry.
I looked up the effects of polyethyleneglycol on plants and found the following. It is used to simulate drought conditions in plants, so probably not good to use it for this application -
"Even PEG of high molecular weight, such as 4000 to 8000 was found to be taken up by plants. PEG was found in shoots and roots. PEG was taken up by maize and bean plants at a relatively slowly rate of 1 mg/g fresh weight per week. However, when roots were damaged or broken, rate was higher. Cotton absorbed less PEG (Lawlor, 1970). Pepper plants also took up PEG, where the higher molecular weight PEG was mostly concentrated in roots while the lower molecular weight compounds accumulated in leaves (Janes, 1974). Yaniv and Werker (1983) presented striking photographs of PEG 1500 to 6000 mw deposited on leaves of various solanaceous plants exposed to PEG in the root medium for 24 h or less. Again, greater deposition was seen in plants with physically damaged roots. PEG 6000 was taken up by tomato plants and found in older leaves and roots (Jacomini et al, 1988). The critical finding was that leaves containing PEG behaved hydraulically differently from leaves without PEG when grown in PEG containing nutrient culture. It can therefore be concluded that PEG, even of higher molecular weight, is taken up by plants and the rate of uptake and concentration in shoots and roots depends on the species, on PEG concentration, on time of exposure and on root damage."