Am I right to think that the potential established at an electrode immediately when placed in solution is given by
[tex]E = E° - R \cdot T \cdot log_e(Q_{surface})[/tex]
where the potential E of the electrode results from the standard electrode potential (E°) of the reaction and the reaction quotient Qsurface at the electrode surface.
Then, once equilibrium is reached, we get a steady value of potential established, which is given by
[tex]E_{eq} = E° - R \cdot T \cdot log_e(K)[/tex]
Noting also that, once equilibrium conditions are established, the value of activities or concentrations at the electrode surface will be the same as their values in the bulk solution.
Is this a correct understanding? And if this potential will be established on its own, is it correct to say that the only need for another electrode to join the first one is so that the difference in potentials can be measured (i.e. Ecell=E(Electrode 1)-E(Electrode 2))?