here we go....
... and I hope I don't get into trouble for posting quite lengthly calculations...
basic equation:
[tex][H^+] + 2 [Pb^{2+}] = 2 [SO_4^{2-}] + [HSO_4^-] + [Cl^-] + [OH^-][/tex]
introducing:
[tex](i) \ K_w = [H^+] * [OH^-][/tex]
hence:
[tex](I) \ [H^+] + 2 [Pb^{2+}] = 2 [SO_4^{2-}] + [HSO_4^-] + [Cl^-] + \frac {K_W}{[H^+]}[/tex]
introducing:
[itex][H^+] [/itex]will be composed of a fixed socket from complete first dissociation of sulfuric acid, plus an additional variable amount I'll call [itex]H'^+[/itex] :
[tex](ii) \ [H^+] = c_0(H_2SO_4) + H'^+[/tex]
(consequence of given initial conditions)
hence:
[tex](II) \ (c_0(H_2SO_4) + H'^+) + 2 [Pb^{2+}] = 2 [SO_4^{2-}] + [HSO_4^-] + [Cl^-] + \frac {K_W}{c_0(H_2SO_4) + H'^+}[/tex]
introducing:
[tex](iii) \ c_0(PbCl_2) = [Pb^{2+}]_{PbCl2} = 0.5 [Cl^-][/tex]
(dissociation of initial [itex]PbCl_2[/itex])
hence:
[tex](III) \ (c_0(H_2SO_4) + H'^+) + 2 [Pb^{2+}] = 2 [SO_4^{2-}] + [HSO_4^-] + 2 c_0(PbCl_2) + \frac {K_W}{c_0(H_2SO_4) + H'^+}[/tex]
introducing:
[tex](iv) \ [Pb^{2+}] = [Pb^{2+}]_{PbSO_4} + [Pb^{2+}]_{PbCl2}[/tex]
(lead ion balance)
hence (including (iii) ) :
[tex](IV) \ (c_0(H_2SO_4) + H'^+) + 2 [Pb^{2+}]_{PbSO4} = 2 [SO_4^{2-}] + [HSO_4^-] + \frac {K_W}{c_0(H_2SO_4) + H'^+}[/tex]
some side calculations(A) ref. sulfuric acid
[tex](v) \ c_0(H_2SO_4) = c_0(HSO_4^-)_{H2SO4}[/tex]
(given from initial problem)
(B) theorem:
we consider the sulfate, hydrogensulfate species as to be composed as follows:
[tex](vi) \ [HSO_4^-] = c_0(HSO_4^-)_{H2SO4} \ - \ [SO_4^{2-}]_{H2SO4}[/tex]
[tex](vii) \ [SO_4^{2-}] = [SO_4^{2-}]_{H2SO4} + [SO_4^{2-}]_{PbSO4}[/tex]
(C) sulfuric acid, [itex]K_{a2}[/itex]
[tex](viii) \ K_{a2} = \frac {[SO_4^{2-}] \cdot [H^+]_{total}}{[HSO_4^{-}]} = \frac {( [SO_4^{2-}]_{H2SO4} + [SO_4^{2-}]_{PbSO4}) \cdot (c_0(H_2SO_4) + H'^+)}{c_0(HSO_4^-)_{H2SO4} \ - \ [SO_4^{2-}]_{H2SO4}}[/tex]
[tex]\to [SO_4^{2-}]_{H2SO4} = \frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} - [SO_4^{2-}]_{PbSO4} \cdot (c_0(H_2SO_4) + H'^+)}{c_0(H_2SO_4) + H'^ \ + \ K_{a2}}[/tex]
(D) solubility lead sulfate (including (iv), (v) (vii) ):
[tex](ix) K_{sp} = [Pb^{2+}] \cdot [SO_4^{2-}] = ( [Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) ) \cdot ([SO_4^{2-}]_{H2SO4} + [SO_4^{2-}]_{PbSO4} )[/tex]
[tex]\to [SO_4^{2-}]_{H2SO4} = \frac {K_{sp}}{[Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) } - [SO_4^{2-}]_{PbSO4}[/tex]
(E) combining (viii) and (ix)
[tex]\frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} - [SO_4^{2-}]_{PbSO4} \cdot (c_0(H_2SO_4) + H'^+)}{c_0(H_2SO_4) + H'^ \ + \ K_{a2}} = \frac {K_{sp}}{[Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) } - [SO_4^{2-}]_{PbSO4}[/tex]
introducing:
[tex](x) \ [Pb^{2+}]_{PbSO4} = [SO_4^{2-}]_{PbSO4}[/tex]
combining with (E)
[tex]\frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} - [Pb^{2+}]_{PbSO4} \cdot (c_0(H_2SO_4) + H'^+)}{c_0(H_2SO_4) + H'^ \ + \ K_{a2}} = \frac {K_{sp}}{[Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) } - [Pb^{2+}]_{PbSO4}[/tex]
[tex]\to [/tex]
[tex]\frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} \cdot ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2))}{K_{sp} - ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) ) \cdot [Pb^{2+}]_{PbSO4}} \ - \ K_{a2} = (c_0(H_2SO_4) + H'^+) \cdot (1 + \frac {[Pb^{2+}]_{PbSO4} \cdot ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2))}{K_{sp} - ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) ) \cdot [Pb^{2+}]_{PbSO4}} )[/tex]
[tex]\to[/tex]
[tex](xi) \ c_0(H_2SO_4) + H'^+ = \frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} \cdot ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2)) \ - \ K_{a2} \cdot (K_{sp} - ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) ) \cdot [Pb^{2+}]_{PbSO4})}{K_{sp} - ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) ) \cdot [Pb^{2+}]_{PbSO4} + [Pb^{2+}]_{PbSO4} \cdot ([Pb^{2+}]_{PbSO_4} + c_0(PbCl_2))}[/tex]
(F) calculation of equilibrium sulfate
from (ix) it follows that
[tex](xii) \ [SO_4^{2-}] = \frac {K_{sp}}{[Pb^{2+}]_{PbSO_4} + c_0(PbCl_2) }[/tex]
(G) calculation of equilibrium hydrogensulfate
from (vi), (viii) and (x) it follows that
[tex](xiii) \ [HSO_4^-] = c_0(HSO_4^-)_{H2SO4} \ - \frac {K_{a2} \cdot c_0(HSO_4^-)_{H2SO4} - [Pb^{2+}]_{PbSO4} \cdot (c_0(H_2SO_4) + H'^+)}{c_0(H_2SO_4) + H'^+ \ + \ K_{a2}}[/tex]
so much, so good.
what we'd do next (but I won't make that explicit no longer: I am sure this "pure mathematics" thing you'd be able to work out for yourself)
- introducing (F) and (G) to (IV), gaining (V)
- multiplying all (V) with [itex](c_0(H_2SO_4) + H'^+)[/itex] and gaining a square equation (VI)
- solving this equation, and gaining [itex]"c_0(H_2SO_4) + H'^+ = ... "[/itex] thereof: (VII)
- combining (VIII) and (xi) , i.e. eliminating [itex]"c_0(H_2SO_4) + H'^+" [/itex](and having both the right sides equal)
... which will lead you to a pretty nasty expression (IX), which, however, aside from [itex][Pb^{2+}]_{PbSO4} [/itex] will consist exclusively of other known values and constants.
we're pretty much there: just rearrange this equation untill you've nothing left but a summ of powers of [itex][Pb^{2+}]_{PbSO4}[/itex](weighted by combinations of said constants and known values) equaling zero
finally, do a numeric solution of this expression: that's how it's done
... and I pretty much prefer the approximated aproach (a) over this, as I think you'll understand by now
any blunders that might have happened are mine exclusively, and I apologize
and no, I don't know any "way in the middle" between (a) and (b): either highest precision or not
...and (a) is really , really , really good enough for all practical purposes, trust me
regards
Ingo
addendum:
I just see, that I forgot to eliminate "[itex]c_0(H_2SO_4) + H'^+[/itex]" from (part of ) the denominator of (xiii) (right side).
you'll have to replace it with (xi)